Development of the Mars Exploration Rover Mobility System

Randel Lindemann
Jet Propulsion Laboratory
California Institute of Technology
Randel.Lindemann@jpl.nasa.gov
(818) 354-5056
Mission Overview - Description

- The Mars Exploration Rover, MER, Project started in May 2000
- Two Identical rovers, Spirit and Opportunity, launched in June and July of 2003
- Spirit landed on Mars on Jan. 4 of 2004, Opportunity landed 3 weeks later
- Both rovers are still going strong, but definitely showing their age

Figure 1. MER Flight Vehicle ‘Spirit’ during Integration & Test
Mission Overview - Science

- Goal: “Follow the Water”, was Mars ever warm and wet?
- Water along with Energy and Nutrients is required for life
- Spirit was sent to Gusev crater, a dry lake bed
- Opportunity was sent to Meridiani Planum, an area on Mars shown by Orbiters to have large amounts of Hematite

Figure 2. View from Mars, atop the Columbia Hills in Gusev Crater, taken by the rover Spirit
Mission Overview – Mobility Requirements

- The rovers were required to:
 - Last 90 sols on Mars
 - Drive up to 1 km
 - Traverse obstacles up to 25 cm in height
 - Traverse over very soft soils
 - Be Statically Stable while tilted in any direction up to 45 degrees
 - Not be torque limited
 - Perform precision drives

Figure 3. View from Mars, of the Burns Cliff formation inside of the Endurance crater on the Meridiani Planum, taken by the rover Opportunity
Mobility System – Rocker Bogie

- Rocker-Bogie mobility is comprised of 6 wheels, all driven, with the outer 4 steered.
- Rocker-Bogie utilizes a differential and linkages to effectively equilibrate the wheel loads during drives.
- The first rover to Mars, Sojourner, was also a rocker-bogie vehicle.

Figure 4. MER Flight Vehicle ‘Spirit’ during Integration & Test, shown with ‘Marie Curie’
Each rover has a left-side and right-side rocker-bogie.

The differential is comprised of two counter rotating planetary gear assemblies, which are connected together by a torque tube.

All elements of the suspension are designed to absorb elastic energy during drive impacts.
The launch, cruise, and entry-descent-landing systems of MER are similar to those of the Mars Pathfinder project of the mid-1990’s.

The main change is the design of the entire spacecraft around a large rover that completely fills the lander.

Once the rover leaves the lander, the lander is dead.
Lander and Rover Deployment

- MER was driven by many extraordinary demands in terms of geometric and mass constraints.
- The task of designing the rover, lander, and aeroshell has been compared to “Russian Dolls” that encapsulate each other, with no room to spare.
- The result is a system with an extreme number of deployments.

Figure 7. MER Flight Vehicle ‘Opportunity’ during first Integration with the Flight Lander.
1. Pyro-Release WEB restraints, Pyro-Cut Rover Cables 1 and 2, Pyro-Release Front Wheels

2. Raise the Rover WEB with the Rover Lift Mechanism until the Rocker Bridges latch to the Differential

3. Rotate Rocker Arms 180 degrees about the deployment axes until the Rocker Arms latch to the Rocker Bridges

4. Lower the Rover Lift Mechanism until the Front Wheels rest on the Lander

5. Continue to Lower the Rover Lift Mechanism until it separates from the WEB and Stows flat in the Lander Basepetal

6. Pyro-Release Rear Wheels, Deploy the Bogies until they latch, release the middle wheels, Cut Rover Cable 3

Figure 8. Sequence of Mechanical Articulations and Latching for Mobility Deployment, graphics generated from CAD Assembly in I-deas NX
Figure 9. Kinematics Analysis performed in I-deas NX
- Because the landing sites chosen for the two rovers were so benign, the initial requirements on mobility were minimal.
- Once landed however, the science team overwhelmingly desired to climb hills and craters.
- Additional work post-launch, showed the rovers to be much more capable than originally required.

Figure 10. Kinematics Analysis performed in I-deas NX.
Traditionally at JPL, design loads for spacecraft initially are enveloped using the MAC.

In addition, from both MPF and MER, airbag landing loads were well characterized at ~31.4 g’s plus a rotational component.

But for a very large and heavy rover, traverse loads were a new issue.

Figure 11: Preliminary Physical Mass Acceleration Curve for MER S/C Launched on Delta-II 7925/STAR48B

- Use for appendage mass up to 500 kg only
- Use for appendage frequency less than 80 Hz
- Apply in worst single direction (not necessarily aligned with coordinate directions)
- Add static 2.2g in thrust direction
- In addition, design to a static load case (no MAC; based on ~1,000 kg S/C):
 - Axial acceleration 7.5 g (Compression)
 - Spin rate 80 RPM
 - Angular acceleration 11 rad/sec^2
An FEA was performed on the rover to cover the launch/landing cases. The FEA analysis was extended as a non-linear FEA to look at the subtleties of the rover deployment and the over-constrained tie-down of the rover to the lander. In addition, the NASTRAN model of the deployed rover was used as the ‘seed’ for a dynamic model.

Figure 12. Three Views of the first Mode (39.4 Hz) of the Stowed Rover calculated by NASTRAN
Rover Analysis – Dynamics during Mobility

Figure 13. Set of Planar Drop Cases for Worst-Case Mobility Loads Analysis, analysis performed in I-deas NX

Position A

Position B

Position C

Position D

Position E

Position F

Position G
Rover Analysis – Dynamic Model

- Modeling
 Idealizations:
 - Rigid Web with mass and inertia
 - Mass and stiffness based on FEM
 - Compliance in suspension, wheels, and torque tube
 - All struts and tubes modeled with Timoshenko beam forces
 - Differential relationship added algebraically
 - Empirical values for damping and friction

Figure 14. Dynamic Modeling of the MER Rover in MSC.ADAMS
The initial Dynamic Simulations all represented wheel ‘Drop’ cases, worst-case scenarios of the rover traversing obstacles at the maximum acceptable limit with the rover falling off the obstacle onto rigid ground.

Figure 15
Worst-case mobility loads were determined to be maximum and became the design limit loads for the wheels, mechanism housings, suspension structure, and the differential.

The mobility loads reflected a largest mass rover of 185 kg, which came to be the flight mass, as well as a 10% uncertainty factor to account for suspension structure stiffness differences.

Much of the up-front kinematics of the loads analysis was done using a suite of CAD tools not specifically designed for the task they were ultimately used for.

<table>
<thead>
<tr>
<th>Item</th>
<th>Load Component</th>
<th>Liftoff</th>
<th>Landing</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheel Vertical Reaction</td>
<td>Fz (lbs)</td>
<td>374</td>
<td>420</td>
<td>600</td>
</tr>
<tr>
<td>Torque Tube</td>
<td>Torsion (in-lb)</td>
<td>44</td>
<td>214</td>
<td>1509</td>
</tr>
<tr>
<td>Output Shaft</td>
<td>Vrss (lbs)</td>
<td>102</td>
<td>306</td>
<td>692</td>
</tr>
<tr>
<td></td>
<td>Mrss (in-lb)</td>
<td>469</td>
<td>1368</td>
<td>7019</td>
</tr>
<tr>
<td>Tip Fitting</td>
<td>Vrss (lbs)</td>
<td>19</td>
<td>59</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Mrss (in-lb)</td>
<td>171</td>
<td>662</td>
<td>3452</td>
</tr>
</tbody>
</table>
Drop Testing – Worst Case Mobility Loads

Figure 16. Dynamic Test Model rover (DTM) in Configuration A, prior to release of the two front wheels.

Figure 17. Dynamic Test Model rover (DTM) in Configuration B, after the release and impact of the front wheels to the floor.
Drop Testing – Results for the AB Case

Figure 18. Test Telemetry taken from Accelerometers attached to the DTM rover

<table>
<thead>
<tr>
<th>Impact Boundary Condition</th>
<th>Web Center of Mass Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max (g)</td>
</tr>
<tr>
<td>Smooth Surface</td>
<td>3.7</td>
</tr>
<tr>
<td>Rough Surface</td>
<td>3.91</td>
</tr>
<tr>
<td>Driven on ESD Surface</td>
<td>0.96</td>
</tr>
</tbody>
</table>
Mobility Testing – Variable Terrain Tilt Platform

- Testing under mobility conditions was performed on a 5 meter square tiltable platform called the Variable Terrain Tilt Platform
- The slope of the VTTP could be set between 0 and 30 degrees
- The surface was initially bare, and later covered with loose sand
- Obstacles could also be attached

Figure 19. DTM Rover on the VTTP at a 15 deg slope, climbing a 25 cm obstacle
Mobility Testing – VTTP with Loose Sand

Figure 20. DTM Rover driving cross-slope on the VTTP at a 20 deg slope covered with 20 cm of loose sand
Test-Model Correlation – Driving Case Results

Figure 21. Comparison of Test Results (in blue) against Simulation Results (in red) for the DTM driving up-slope

![Graph showing comparison of Test Results (blue) against Simulation Results (red) for DTM driving up-slope.]

Figure 22. Comparison of Test Results (in blue) against Simulation Results (in red) for the DTM driving down-slope

![Graph showing comparison of Test Results (blue) against Simulation Results (red) for DTM driving down-slope.]

Legend:
- Test Telemetry
- ADAMS Simulation Results
Results for Driving in Loose Sand

Figure 23

MER Rover Driving directly Up Slope on Dry, Loose Sand: Mars Wt

Figure 24

MER Rover Driving directly Down Slope on Dry, Loose Sand: Mars Wt

Curve for Interpolation: generated from cubic splines
Mobility Performance on Mars - Opportunity

- Analysis showed and testing confirmed that the rovers were far more capable than as originally 'sold'.
- A risk-averse project management had to be convinced of the rovers' capability and the inherent safety of the new operations in order to get them approved.

Figure 25. MER Operations Plan for Driving Opportunity into the Endurance Crater
Mobility Performance on Mars - Opportunity

- Rover planners use imaging and kinematic based tools to create 3D meshes of the ground to be driven over, they then plan traverses over the terrain specifying way points to tie the traverse to the safest path.
- In all cases these tools for rover navigation were new, in house developments, not related to the CAD tools.

Figure 26
Overall Mobility Performance on Mars

- The rovers have far exceeded their mission requirements in the following ways:
 - Spirit and Opportunity are still working after 800+ sols on Mars (compared to the required 90 sols)
 - Spirit and Opportunity have both traveled nearly 7 km each (compared to the required 1 km)
 - Spirit climbed to the top of a local mountain, called the Columbia hills, during which time the local slopes went as high as 30 degrees; Similarly, Opportunity descended into and then back out of the Endurance crater during which it traversed slopes over 30 degrees (compared to an initial requirement of 20 degrees)
- One area where the rovers performance was not exceptional was in the area of sinkage into soft soil, and the resulting soil work and gross slippage that results; in one particular case, Opportunity was essentially stuck for about a month while testing on the ground confirmed the 99.5% slips required to get out of a 30 cm sand dune
CAD and CAE Lessons Learned

- The MER mission represents only the second semi-autonomous rover mission developed and performed by NASA or anyone else.
- Most of the tools (CAD, CAE, testing) utilized were pushed in new and unfamiliar directions, the process itself being an experimental one to arrive at the most appropriate development of Requirements, Designs, and Test/Analysis Verification approaches.
- Both MER and MPF were trailblazing missions, and they’re development history will allow the next rover mission, MSL, to follow a much better defined process of design and analysis.
- The increased use of integrated and proven tools will make the task of developing future rovers more efficient, reducing project and mission risk, and costs.
This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.