
PLM World ‘06

Solving the System Software
Development Challenge by Integrating
Teamcenter Systems Engineering with
UML-based Model-driven Development

Jim McElroy
I-Logix, Inc.
Jimm@ilogix.com
978-645-3026

Global System Development Challenges

· Complexity
· Communication and

Collaboration
· Productivity
· Time-to-market
· Quality
· Safety, Security, Reliability

Time-to-market Features

Quality

Technical System Development Evolution

Hardware software

Hardware
Hardware

Hardware
Hardware

Hardware
Hardware

Hardware
Hardware

software

Software

Software
Software

Software
Software

Software
Software

Some Strategies to Solve These Issues

· Requirements Management Tools
· Model-driven Development

· Abstraction
· Automation
· Verification

· Product Life-cycle Management Tools

Our Goal

Present a practical cohesive methodology and
infrastructure for both requirements analysis
and development and system software
development

Who is Likely to Care and Why?

· Program Management
· System Engineers and Architects
· System and Software Developer
· Quality Assurance and Testing

· Better communication and collaboration
· Better estimation of requirements changes

and affects
· Increased developer productivity
· Improved software quality

Why…

The Solution – Teamcenter Systems
Engineering Tightly Coupled with MDD

· Requirements analysis and design
· System architectural definition
· Traceability to design, implementation, and

test
· Impact analysis
· Coverage analysis
· Requirements documentation

Model-driven Development

A design and development methodology which
uses models as the basis for analyzing
requirements, developing the design,
implementing, testing, and deploying the
application

Modeling Requires a Language

· UML 2.0 – Standards Compliance
· Architecture
· Behavior
· Collaboration

UML 2.0 Diagrams

MDD by Example

MDD – Functional Requirements View

MDD – Architecture Example

MDD – Architecture Level 2

MDD – Behavior Example

MDD – Collaboration Example

MDD – Example Capabilities

· Modeling Systems in UML 2.0
· Modeling Behavior and Collaboration
· Design-level debugging
· Dynamic Model/Code Associativity
· Documentation Generation

Benefits of Modeling

· Modeling gives us the ability to visualize the
system clearly

· Simplify the problem through abstraction
· Executable models further enhance the

visualization, understanding, clarification of
intended functionality and behavior

Key Differentiators for MDD

·· Modeling (UML 2.0 PLUS)Modeling (UML 2.0 PLUS)
· Benefit: Designing systems at a higher level of abstraction in order to easily deal with

complexity

·· Code GenerationCode Generation
· Benefit: Get to the final product quicker. Enables designers to work at a higher level of

abstraction to deal with system complexity

·· Model/Code Model/Code AssociativityAssociativity
· Benefit: Freedom to work at the model level or source code level, and ensure views of the

system are always synchronized.

·· Real Time FrameworkReal Time Framework
· Benefit: Allows you to create a deployable application, with the generated code, onto a real

time operating system

·· Reverse EngineeringReverse Engineering
· Benefit: Allows you to reuse your IP, as well as coexist with ongoing hand coding activities

·· Design for TestabilityDesign for Testability
· Benefit: Automate the testing process through using the design requirements to validate

and to completely cover all system scenarios

PLM World ‘06

In an ideal world …

UML Models within TcSE

UGS Teamcenter SE and Rhapsody

Create Rhapsody
UML Model
Elements directly
within Teamcenter
Systems
Engineering

UGS Teamcenter SE and Rhapsody

Create traceability
links between
Rhapsody UML
Model Elements and
Teamcenter
Systems
Engineering

UGS Teamcenter SE and Rhapsody

For a given
breakdown of
Rhapsody UML
Elements created in
Teamcenter
Systems
Engineering, create
a Rhapsody
Diagram using
“Rhapsody Live”

UGS Teamcenter SE and Rhapsody

Based on the type of
Rhapsody UML
Elements selected in
Teamcenter
Systems
Engineering browser
Rhapsody launches
from Teamcenter,
and the diagram is
auto populated with
the correct Elements

Hitting Save in
Rhapsody,
automatically saves
the diagram within
Teamcenter
Systems
Engineering

UGS Teamcenter SE and Rhapsody
Here we see the
saved Rhapsody
Use case Diagram
now in Teamcenter
Systems
Engineering!

The Integrated TcSE and Rhapsody
Solution

· Optimal workflow for systems and software
engineers increasing overall team
productivity

· Dramatically improves communication
throughout the entire team

· Facilitates domain specific modeling
· Ensures requirements are addressed in the

design
· Quickly illuminates requirement issues or

design flaws for rapid product development

	Solving the System Software Development Challenge by Integrating Teamcenter Systems Engineering with �UML-based Model-driven D
	Global System Development Challenges
	Technical System Development Evolution
	Some Strategies to Solve These Issues
	Our Goal
	Who is Likely to Care and Why?
	The Solution – Teamcenter Systems Engineering Tightly Coupled with MDD
	Model-driven Development
	Modeling Requires a Language
	UML 2.0 Diagrams
	MDD by Example
	MDD – Functional Requirements View
	MDD – Architecture Example
	MDD – Architecture Level 2
	MDD – Behavior Example
	MDD – Collaboration Example
	MDD – Example Capabilities
	Benefits of Modeling
	Key Differentiators for MDD
	UML Models within TcSE
	UGS Teamcenter SE and Rhapsody
	UGS Teamcenter SE and Rhapsody
	UGS Teamcenter SE and Rhapsody
	UGS Teamcenter SE and Rhapsody
	UGS Teamcenter SE and Rhapsody
	The Integrated TcSE and Rhapsody Solution

