
PLM World ‘06

Managing Software Components with
Teamcenter Enterprise and UML-based

Model-Driven Development

Jim McElroy
I-Logix, Inc.
Jimm@ilogix.com
978-645-3026

System Development Evolution

Hardware software

Hardware
Hardware

Hardware
Hardware

Hardware
Hardware

Hardware
Hardware

software

Software

Software
Software

Software
Software

Software
Software

Our Goal

Present a practical cohesive methodology and
infrastructure for both developing and
managing “Software Parts” with the
mechatronic systems they control

Primary Issues in Today’s Global
Software Development Market

· Complexity
· Communication and

Collaboration
· Productivity
· Time-to-market
· Quality
· Safety, Security, Reliability

Time-to-market Features

Quality

Strategies and Technologies to Solve
these Global Issues

· Model-Driven Development
· Abstraction
· Automation (Code generation, testing, documentation)
· Reuse (through models and CBD)
· Communication and collaboration

· Software Configuration Management
· Product Life-cycle Management

· Functional Decomposition
· Traceability of Requirements, into and throughout the

Physical Design
· Linkage and Navigation to/from the BOM

Model-driven Development

A design and development methodology which
uses models as the basis for analyzing
requirements, developing the design,
implementing, testing, and deploying the
application

Modeling Requires a Language

· UML 2.0 – Standards Compliance
· Architecture
· Behavior
· Collaboration

· SysML
· A specialized profile of UML 2.0 for systems engineering.

Both reuses and extends UML 2.0.

· DoDAF
· An architectural framework providing a common

communication mechanism for operational, system, and
technical architectural views.

UML 2.0 Diagrams

MDD by Example

MDD – Functional Requirements View

MDD – Architecture Example

MDD – Architecture Level 2

MDD – Behavior Example

MDD – Collaboration Example

Benefits of Modeling

· Modeling gives us the ability to visualize the
system clearly

· Simplify the problem through abstraction
· Executable models further enhance the

visualization, understanding, clarification of
intended functionality and behavior

Key Differentiators for MDD

·· Modeling (UML 2.0 PLUS)Modeling (UML 2.0 PLUS)
· Benefit: Designing systems at a higher level of abstraction in order to easily deal with

complexity

·· Code GenerationCode Generation
· Benefit: Get to the final product quicker. Enables designers to work at a higher level of

abstraction to deal with system complexity

·· Model/Code Model/Code AssociativityAssociativity
· Benefit: Freedom to work at the model level or source code level, and ensure views of the

system are always synchronized.

·· Real Time FrameworkReal Time Framework
· Benefit: Allows you to create a deployable application, with the generated code, onto a real

time operating system

·· Reverse EngineeringReverse Engineering
· Benefit: Allows you to reuse your IP, as well as coexist with ongoing hand coding activities

·· Design for TestabilityDesign for Testability
· Benefit: Automate the testing process through using the design requirements to validate

and to completely cover all system scenarios

Crossing the PLM Chasm

· Historically, versioning and configuration
management have been major bottlenecks to
system development

· Hardware and physical elements follow their
own life-cycles separate from the software

· Need to connect the software development
life-cycle and the artifacts that are produced
with the actual mechatronic systems they
control

· Save development time and energy while at
the same time improving system quality

Integrating MDD with PLM

· Software Component Development and
Management with MDD

· Elevate Components to “Software Parts”
· Managing and Controlling “Software Parts”

within the PLM System and the Vault

What is a Software Component?

· An executable?
· A library?
· Collection of source code and header files?

A generic component definition…

A component is a nontrivial, nearly independent, and
replaceable part of a system that fulfills a clear
function in the context of a well-defined architecture.
A component conforms to and provides the physical
realization of a set of interfaces

Component Life-cycle and Management

· Creation
· Validate
· Modification
· Documenting
· Publishing

· Storing
· Finding
· Downloading
· Testing
· Submit and monitor

Defect and
Enhancement
Requests

· Metrics collection

Utility CapabilitiesRequired Capabilities

The Software Part

Software Part

Component

Source Files

Include Files Binary Files

Libraries

Executables

UML Design Files

Links to Reqts Files

Design Documentation Test Documentation

Test Plans and Procedures

Test Results

Author, Date of Creation, Type

Links to Defects/Enhs

Meta Data
PLM
Links

Teamcenter - Management and
Distribution of the Component

· Storing the component for reuse
· Determining system-wide dependencies
· Publishing the component
· Finding components in the gallery
· Keeping metrics and data pertaining to

component
· Software Part becomes a part within the

Teamcenter Assembly
· Single-source configuration control

MDD, CM, and Vault Workflow

Artifacts
Models
Code
Documentation

Teamcenter

MDD

Software
Config Mgt

Artifacts

Milestone – Software Part

ArtifactsArtifactsArtifactsArtifactsArtifacts

Milestone – Software Part

Release Mgr - As required

Developer - Daily/Weekly

Integrated Approach

· MDD will enable the creation, validation, and
executable visualization of Software
Components

· Teamcenter will provide the infrastructure for
elevating Software Components to Software
Parts and then managing and controlling
those parts within the assembly

· Synchronizes and couples the “Software
Parts” with the mechatronic parts they control
improving workflow, productivity, and quality

Just an example of a S/W Part!

SW_Configuration

OS:int
OS_Version:int
Framework:int
Framework_Version:int
Compatability:int

DesignPackage

UML_Package:int
DesignDocument:int

SW_Component

Name:int
Description:int
ID:int
Vendor:int

1

*

SW_Configuration_TestHarness

Compatability:int
ExpectedResults:int
ExecutionGuide:int
Testplan:int

1

SpecificationPackage

UML_Package:int
DesignDocument:int

1

SW_Component_TestHarness

Compatability:int
ExpectedResults:int
ExecutionGuide:int
Testplan:int

1

1

SW_Component_Assembly

Description:Text
Attachments:Document

*

SW_Deployment_Assembly

Attachments:Document
Description:Text

*

For a cellular phone this might
be a collection of components

such as calendar, voice
recognition, gaming package etc

The voice
recognitio
n package

may
include a

design
package,
specificat

ion
package

etc

The voice recognition
package may be built for

various OS and frameworks

The voice recognition
component may have a test

harness

And for deployment
purpose we may
keep a specific
configuration

assembly

Pulling all the Value Together

· Synchronized MDD, SCM, and PLM
· Single source for configuration control

ensures seamless workflow and productivity
gains

· Made software developers more productive,
release managers more effective and
efficient

· Strengthened our joint position in developing
highly scalable software solutions

	Managing Software Components with Teamcenter Enterprise and UML-based Model-Driven Development
	System Development Evolution
	Our Goal
	Primary Issues in Today’s Global Software Development Market
	Strategies and Technologies to Solve these Global Issues
	Model-driven Development
	Modeling Requires a Language
	UML 2.0 Diagrams
	MDD by Example
	MDD – Functional Requirements View
	MDD – Architecture Example
	MDD – Architecture Level 2
	MDD – Behavior Example
	MDD – Collaboration Example
	Benefits of Modeling
	Key Differentiators for MDD
	Crossing the PLM Chasm
	Integrating MDD with PLM
	What is a Software Component?
	Component Life-cycle and Management
	The Software Part
	Teamcenter - Management and Distribution of the Component
	MDD, CM, and Vault Workflow
	Integrated Approach
	Just an example of a S/W Part!
	Pulling all the Value Together

