Some Applications of Nastran DMAP in Aerospace Analysis

Paul Bleloch
ATA Engineering, Inc.
paul.bleloch@ata-e.com.com
858-480-2065
Outline

- What is DMAP?
- Use of DMAP to Select ASET DOF
- Use of DMAP in dynamic analysis
 - Modal transient analysis
 - Fluid mass loading
- Summary/Free stuff!
DMAP

- Direct Matrix Abstraction Program
- Fundamental to the way Nastran works
 - All standard solution sequences written in DMAP
 - Solution sequences can be “ALTERed” by adding user defined DMAP
 - Not true for new nonlinear sequences (SOL 601/701) because these are running other codes
- NASA identified DMAP as one of the key features of NASTRAN early on
 - Not originally designed as a “user friendly” programming language
- Community of DMAP programmers has developed over time
 - nastrandmap on Yahoo Groups
- MSC and NX Nastran DMAP has changed since original COSMIC version
 - Fundamentals are the same
- Some codes with NASTRAN name are not based on DMAP
 - What defines NASTRAN?
- DMAP is a very rich and powerful language, but not for the “faint of heart”
- You can use DMAP alters without knowing DMAP
 - Some rudimentary knowledge is helpful (or entertaining)
Detailed descriptions of all DMAP modules - 100’s of modules
MODULE Input_Datablocks,…/Output_Datablocks,…/Parameters/…

Examples:

ADD A,B/C/ALPHA/BETA/IOPT

\[[C] = \alpha [A](+,\otimes,\div)\beta[B] \]

MPYAD A,B,C/X/T/SIGNAB/SIGNC/PREC/FORM

\[[X] = \pm [A]^T[B] \pm [C] \]

SOLVE A,B,SIL,USET,PARTVEC/X/SYM/SIGN/SETNAME

\[[X] = \pm [A]^{-1}[B] \]

MATPRN A,B,C,D,E//

MESSAGE //P1/P2/…/PN

OUTPUT4 A,B,C,D,E//ITAPE/IUNIT//BIGMAT/DIGITS
DMAP Offers Common Logic Constructs

- IF THEN, ELSE, ENDIF
 IF (SEID>0) THEN $
 ...$
 ELSE $
 ...$
 ENDIF $

- DO WHILE, ENDDO
 DO WHILE (I<N) $
 ...$
 ENDDO $
DMAP Controlled by Parameters

- Parameters values are defined by user on PARAM cards in bulk data or case control
 - Real, complex, integer, logical or character
- Use parameters to control execution of DMAP
 - Character values (‘YES’ or ‘NO’) where possible
 - Set up reasonable default values
 - Clearly comment use of parameters
- Echo back values of parameters using MESSAGE module
- User interaction with DMAP should be through parameters as much as possible
DMAP Can be Used to “Alter” Solution Sequences

- Most common use of DMAP
- Take an existing solution sequence (e.g. modal transient) and modify some part of its operation
- DMAP is “inserted” in a specified location in the solution sequence
- Three ways to alter solution sequence
 - Alter line number; insert at a specified line number
 - String based alter; insert after a specified string
 - MALTER; insert after limited predefined locations
- DMAP is the language, DMAP alter (or alter) is set of DMAP code that modifies a solution sequence
Using a Line or String Based Alter

- Line based alter
 COMPILE PHASE1DR LIST
 ALTER 152 $
 MATPRN KGG// $

- String based alter
 COMPILE PHASE1DR LIST
 ALTER ‘CALL PHASE1A’ $
 MATPRN KGG// $

- String based alters are much more robust from version to version
Using a MALTER Based Alter

- MALTER will search through entire solution sequence for a string
 - Designed to look for specific “MALTER” strings
 - Does not require a COMPILE card
 - COMPILE options set on a “COMPILER” card
- Very coarse ability to alter solution sequence
- I have not used MALTER much
 - Old habits die hard
 - “Real DMAPers” don’t do MALTER ;-)
USERDMAP Provides Simple Means to Develop User DMAPs

- Very simple 1 line solution sequence that just runs
 PREFACE SUBDMAP
 - Reads Case Control and Bulk Data and generates standard
 datablocks (GEOMi, CASECC, etc.)
 - You can access datablocks already on the database if this
 is a restart run

- Following are equivalent:
 ALTER 2
 ALTER ‘CALL PREFACE’
 MALTER ‘$USERDMAP - AFTER CALL PREFACE’

- SOL 100 and SOL USERDMAP are equivalent
Summary of DMAP

- DMAP is a matrix oriented programming language
- All “standard” Nastran is based on DMAP
- To use DMAP effectively you need to understand:
 - Structure of solution sequences
 - Nastran data blocks and parameters
 - DMAP documentation
- DMAP alters are easy to use IFF:
 - String based to make robust
 - Use parameters to control
 - Are well commented
Outline

- What is DMAP?
- **Use of DMAP to Select ASET DOF**
- Use of DMAP in dynamic analysis
 - Modal transient analysis
 - Fluid mass loading
- **Summary/Free stuff!**
Why is Selecting ASET DOF Important?

- ASET DOF used for Guyan Reduction
 - Master DOF in I-DEAS
- Accuracy of reduction very sensitive to choice of DOF
- Reduced matrices used in comparing test and analysis models (TAMs)

\[
\begin{bmatrix}
M_{AA}
\end{bmatrix} = \begin{bmatrix}
I \\
G_{OA}
\end{bmatrix}^T \begin{bmatrix}
M_{FF} \\
I
\end{bmatrix} \begin{bmatrix}
I \\
G_{OA}
\end{bmatrix}
\]

\[
G_{OA} = -[K_{OO}]^{-1}[K_{OO}]
\]
DOF Selected Using Iterative Residual Kinetic Energy Algorithm

- Good Guyan reduction results in orthogonal modes up to frequency range of interest

\[\varepsilon = \left[I - \begin{bmatrix} \Phi_A \end{bmatrix}^T [M_{AA}] \begin{bmatrix} \Phi_A \end{bmatrix} \right] \]

- Define Residual Kinetic Energy as grid point KE associated with error in expanded mode

\[RKE = [M_{oo}] \left([\Phi_o] - [G_{oa}] \begin{bmatrix} \Phi_A \end{bmatrix} \right) \otimes \left([\Phi_o] - [G_{oa}] \begin{bmatrix} \Phi_A \end{bmatrix} \right) \]

- Iterative Residual Kinetic Energy (IRKE) starts with small ASET and adds DOF one or more at a time based on RKE

- Error calculated at each step. Algorithm stopped when error reaches acceptable level
DMAP is ideal tool for implementing IRKE

- Need to deal with full size matrices
 - Possibly millions of DOF
 - Problem would not be feasible in Matlab
- Key to efficient implementation is to avoid solving $[K_{OO}]^{-1}[K_{OA}]$ at each iteration
- Use ‘U1’ set to limit DOF to choose from
- Write error norm at each step to monitor progress
- Other algorithms implemented in DMAP
 - Effective Independence (EI)
 - Mass Weighted Effective Independence (MWEI)
 - Iterative Guyan Reduction (IGR)
- Part of a package of DMAP alters called TAMKIT
Outline

- What is DMAP?
- Use of DMAP to Select ASET DOF
- Use of DMAP in dynamic analysis
 - Modal transient analysis
 - Fluid mass loading
- Summary/Free stuff!
A DMAP Example

- Correct “Deficiencies” in Modal Transient Analysis
 - Start from a quasi-static initial condition
 - Include only flexible contribution to displacement outputs
 - Static and Dynamic Uncertainty Factors (SUF and DUF)
 - Conversion of structural to viscous damping
Initial Conditions

- Modal transient does not support initial conditions
 - Initial force treated as a step
 - IC Case Control allows some capability, but not practical
- Input force can be decomposed as follows:

\[
[I]{\dot{q}(t)} + [B]{\ddot{q}(t)} + [\Lambda]{q(t)} = [\Phi_A]^T (\{f_A(t)\} - \{f_A(t_0)\}) + \{f_A(t_0)\}
\]

- Quasi-static response defined as follows:

\[
\begin{align*}
\{\mathcal{Q}_{RB}\} &= [\Phi_A]^T_{RB} \{f_A(t_0)\} \\
\{q_{RB}\} &= \{0\} \\
\{\mathcal{Q}_{EL}\} &= \{0\} \\
\{q_{EL}\} &= [\Lambda_{EL}]^{-1} [\Phi_A]^T_{EL} \{f_A(t_0)\}
\end{align*}
\]

- Subtract initial forces from force time history and calculate response
- Add quasi-static response to initial forces back in
• Typically not interested in rigid body displacements
 • Rigid body displacements “swamp” flexible displacements
 • Only flexible displacements generate loads
 • Including rigid body displacements results in inaccurate loads
 • Can do this using PARAM,LFREQ, but that also gets rid of rigid body accelerations

• Solution is to simply set rigid body displacements to zero

\[
\{q_{RB}(t)\} = \{0\}
\]
Apply SUF and DUF

- Uncertainty factors commonly used in coupled loads analysis
 - Occasionally desire different factors on quasi-static (SUF) vs. dynamic (DUF) parts of response
- Quasi-static response defined as follows:
 \[
 \{\Phi_RB(t)\}_{QS} = [\Phi_A]_{RB} \{f_A(t)\} \\
 \{q_{RB}(t)\}_{QS} = \{0\}
 \]
 \[
 \{\Phi_{EL}(t)\}_{QS} = \{0\} \\
 \{q_{EL}(t)\}_{QS} = [\Lambda_{EL}]^{-1} [\Phi_A]_{EL} \{f_A(t)\}
 \]
- Dynamic response is total response minus quasi-static
 \[
 \{\Phi(t)\}_{DYN} = \{\Phi(t)\} - \{\Phi(t)\}_{QS} \\
 \{q(t)\}_{DYN} = \{q(t)\} - \{q(t)\}_{QS}
 \]
- Total response recombined with factors
 \[
 \{\Phi(t)\} = DUF \{\Phi(t)\}_{DYN} + SUF \{\Phi(t)\}_{QS}
 \]
 \[
 \{q(t)\} = DUF \{q(t)\}_{DYN} + SUF \{q(t)\}_{QS}
 \]
Equivalent Viscous Damping

- Structural (or material or hysteretic) damping is only defined in the frequency domain
 \[
 [K] = [K] + j([K4] + g[K])
 \]
- Nastran converts structural damping to equivalent viscous at two frequencies (W3 and W4)
 \[
 [B] = \frac{g}{\omega_3}[K] + \frac{1}{\omega_4}[K4]
 \]
- In modal space we can match damping ratio at all modal resonances
 \[
 [B_{HH}] = g[K_{HH}]^{1/2} + [K_{HH}]^{-1/4}[K4_{HH}] [K_{HH}]^{-1/4}
 \]
Implementation in DMAP

- Use Parameters to Control Solution
 - All parameters have defaults
 - User only needs alter and parameters

$ PARAM,NRIG,I : Number of rigid body modes (default=6)
$ PARAM,AUTOIC,CHAR8 : 'YES' calculate initial conditions (default)
$ PARAM,AUTOIC,CHAR8 : 'NO' standard Nastran processing
$ PARAM,EQVDMP,CHAR8 : 'YES' apply equivalent damping algorithm
$ PARAM,EQVDMP,CHAR8 : 'NO' standard Nastran (default)
$ PARAM,RBDISP,CHAR8 : 'YES' include rigid body displacements
$ PARAM,RBDISP,CHAR8 : 'NO' no rigid body displacements (default)
$ PARAM,NORESV,CHAR8 : 'YES' remove residual vectors from dynamic response (default)
$ PARAM,NORESV,CHAR8 : 'NO' do not remove residual vectors from dynamic response
$ PARAM,DUF,RS : Dynamic Uncertainty Factor (default = 1.0)
$ PARAM,SUF,RS : Static Uncertainty Factor (default = 1.0)

- Use string based alter commands
 - Minimize number of locations that are “altered”
 - Try to find “robust” locations for alters
 - Hasn’t broken yet
Enhancements to MFLUID

- Fluid mass matrix based on elemental matrices
 \[
 \begin{bmatrix}
 M_{\text{fluid}} \\
 \end{bmatrix} =
 \begin{bmatrix}
 GEG \\
 \end{bmatrix}
 \begin{bmatrix}
 MLAM \\
 \end{bmatrix}
 \begin{bmatrix}
 MCHI \\
 \end{bmatrix}^{-1}
 \begin{bmatrix}
 GEG \\
 \end{bmatrix}^T
 \]

- Use non-sparse decomposition of \([MCHI]\)

- Calculate fluid rigid body mass
 \[
 \begin{bmatrix}
 M_{\text{fluid}} \\
 \end{bmatrix}_{RB} =
 \begin{bmatrix}
 \Phi_{RB} \\
 \end{bmatrix}^T
 \begin{bmatrix}
 M_{\text{fluid}} \\
 \end{bmatrix}
 \begin{bmatrix}
 \Phi_{RB} \\
 \end{bmatrix}
 \]

- When used with a “Q-set” replaces functionality of PARAM,VMOPT,2 in a competitive version of Nastran
Outline

- What is DMAP?
- Use of DMAP to Select ASET DOF
- Use of DMAP in dynamic analysis
 - Modal transient analysis
 - Fluid mass loading
- Summary/Free stuff!
Summary

- DMAP is a primary differentiator for Nastran vs. other FEM codes
- All NX Nastran (other than advanced nonlinear) is written in DMAP and can be modified using DMAP
- To write DMAP alters you need to understand Nastran data blocks and solution sequences
- Using DMAP is easy if it’s written well
 - Use string based alters for robustness
 - Use parameters to control
 - Comment, comment, comment
Free Stuff (DMAP alters) on CD!

- modal_transient
 - Variety of updates to SOL112
- mfluid
 - Calculate fluid mass properties
- readcb
 - Read components in OUTPUT4 format
- unit_conversion
 - Convert units of components
- rcvrcb109
 - Recover component results from direct transient