PLM World '06

Some Applications of Nastran DMAP in Aerospace Analysis

Paul Blelloch ATA Engineering, Inc. paul.blelloch@ata-e.com.com 858-480-2065

Premium Partners:

Microsoft

Outline

- What is DMAP?
- Use of DMAP to Select ASET DOF
- Use of DMAP in dynamic analysis
 - Modal transient analysis
 - Fluid mass loading
- Summary/Free stuff!

DMAP

- Direct Matrix Abstraction Program
- Fundamental to the way Nastran works
 - All standard solution sequences written in DMAP
 - Solution sequences can be "ALTERed" by adding user defined DMAP
 - Not true for new nonlinear sequences (SOL 601/701) because these are running other codes
- · NASA identified DMAP as one of the key features of NASTRAN early on
 - Not originally designed as a "user friendly" programming language
- Community of DMAP programmers has developed over time
 - <u>nastrandmap</u> on Yahoo Groups
- MSC and NX Nastran DMAP has changed since original COSMIC version
 - Fundamentals are the same
- Some codes with NASTRAN name are not based on DMAP
 - · What defines NASTRAN?
- · DMAP is a very rich and powerful language, but not for the "faint of heart"
- You can use DMAP alters without knowing DMAP
 - · Some rudimentary knowledge is helpful (or entertaining)

DMAP Documentation

NX Nastran Version 4.1 Help Library Bookshelf

Restricted Rights Notices Using Search

- NX Nastran 4.1 Release Guide
- Training and Suppport
- UGS Education Services (web)
- Global Technical Access Center (web)

NX Nastran 4.0 Documentation * See the 4.1 Release Guide for all updates related to NX Nastran 4.1	
Previous Release Information	User Manuals
NX Nastran 4.0 New Features	Aeroelasticity
NX Nastran 3.0 New Features	Aeroelastic Analysis User's Guide
	Dynamics
Installation and System Administration	Basic Dynamic Analysis User's Guide
Installation and Operations Guide	Advanced Dynamic Analysis User's Guide
	Rotor Dynamics User's Guide
Reference Manuals	Superelements and Substructuring
Quick Reference Guide	Superelements User's Guide
• NX Nastran User's Guide	Nonlinear Analysis
DMAP Programmer's Guide	Basic Nonlinear Analysis User's Guide
Numerical Methods User's Guide	Advanced Nonlinear Theory and Modeling Guide
Element Library	 Handbook of Nonlinear Analysis (SOL 106)
Nastran Theoretical Manual	Thermal
Error List	Thermal Analysis User's Guide
	Optimization
NX Nastran Terminology	• Design Sensitivity and Optimization User's Guide
NX Nastran Glossary	

Detailed descriptions of all DMAP modules

- 100's of modules

MODULE Input_Datablocks,.../Output_Datablocks,.../Parameters/...

Examples:

ADD A,B/C/ALPHA/BETA/IOPT $[C] = \alpha[A](+,\otimes,\div)\beta[B]$ MPYAD A,B,C/X/T/SIGNAB/SIGNC/PREC/FORM $[X] = \pm[A]^{(T)}[B] \pm [C]$ SOLVE A,B,SIL,USET,PARTVEC/X/SYM/SIGN/SETNAME $[X] = \pm[A]^{-1}[B]$ MATPRN A,B,C,D,E//

MESSAGE //P1/P2/.../PN

OUTPUT4 A,B,C,D,E//ITAPE/IUNIT//BIGMAT/DIGITS

DMAP Offers Common Logic Constructs

- IF THEN, ELSE, ENDIF
 IF (SEID>0) THEN \$
 - ELSE \$

. . .

- ENDIF \$
- DO WHILE, ENDDO DO WHILE (I<N)\$
 - ENDDO \$

. . .

DMAP Controlled by Parameters

- Parameters values are defined by user on PARAM cards in bulk data or case control
 Real, complex, integer, logical or character
- Use parameters to control execution of DMAP
 - Character values ('YES' or 'NO') where possible
 - Set up reasonable default values
 - Clearly comment use of parameters
- Echo back values of parameters using MESSAGE module
- User interaction with DMAP should be through parameters as much as possible

DMAP Can be Used to "Alter" Solution Sequences

- Most common use of DMAP
- Take an existing solution sequence (e.g. modal transient) and modify some part of its operation
- DMAP is "inserted" in a specified location in the solution sequence
- Three ways to alter solution sequence
 - Alter line number; insert at a specified line number
 - String based alter; insert after a specified string
 - MALTER; insert after limited predefined locations
- DMAP is the language, DMAP alter (or alter) is set of DMAP code that modifies a solution sequence

Using a Line or String Based Alter

- Line based alter
 COMPILE PHASE1DR LIST
 ALTER 152 \$
 MATPRN KGG// \$
- String based alter
 COMPILE PHASE1DR LIST
 ALTER 'CALL PHASE1A' \$
 MATPRN KGG// \$
- String based alters are much more robust from version to version

Using a MALTER Based Alter

- MALTER will search through entire solution sequence for a string
 - Designed to look for specific "MALTER" strings
 - Does not require a COMPILE card
 - · COMPILE options set on a "COMPILER" card
- Very coarse ability to alter solution sequence
- I have not used MALTER much
 - · Old habits die hard
 - · "Real DMAPers" don't do MALTER ;-)

```
SOL 101
COMPILER LIST
MALTER 'MALTER:AFTER SUPERELEMENT STIFFNESS GENERATION'
MATPRN KJJZ// $
```


USERDMAP Provides Simple Means to Develop User DMAPs

- Very simple 1 line solution sequence that just runs PREFACE SUBDMAP
 - Reads Case Control and Bulk Data and generates standard datablocks (GEOMi, CASECC, etc.)
 - You can access datablocks already on the database if this is a restart run
- Following are equivalent:
 - alter 2 alter `Call preface*'*
 - MALTER '\$USERDMAP AFTER CALL PREFACE'
- SOL 100 and SOL USERDMAP are equivalent

Summary of DMAP

- DMAP is a matrix oriented programming language
- All "standard" Nastran is based on DMAP
- To use DMAP effectively you need to understand:
 - Structure of solution sequences
 - Nastran data blocks and parameters
 - DMAP documentation
- DMAP alters are easy to use IFF:
 - String based to make robust
 - Use parameters to control
 - Are well commented

Outline

- What is DMAP?
- Use of DMAP to Select ASET DOF
- Use of DMAP in dynamic analysis
 - Modal transient analysis
 - Fluid mass loading
- Summary/Free stuff!

Why is Selecting ASET DOF Important?

- ASET DOF used for Guyan Reduction
 - Master DOF in I-DEAS
- Accuracy of reduction very sensitive to choice of DOF
- Reduced matrices used in comparing test and analysis models (TAMs)

$$\begin{bmatrix} M_{AA} \end{bmatrix} = \begin{bmatrix} I \\ G_{OA} \end{bmatrix}^T \begin{bmatrix} M_{FF} \end{bmatrix} \begin{bmatrix} I \\ G_{OA} \end{bmatrix}$$
$$\begin{bmatrix} G_{OA} \end{bmatrix} = -\begin{bmatrix} K_{OO} \end{bmatrix}^{-1} \begin{bmatrix} K_{OO} \end{bmatrix}$$

DOF Selected Using Iterative Residual Kinetic Energy Algorithm

 Good Guyan reduction results in orthogonal modes up to frequency range of interest

$$\varepsilon = \left[\left[I \right] - \left[\Phi_A \right]^T \left[M_{AA} \right] \Phi_A \right]$$

 Define Residual Kinetic Energy as grid point KE associated with error in expanded mode

$$RKE = [M_{OO}]([\Phi_O] - [G_{OA}][\Phi_A]) \otimes ([\Phi_O] - [G_{OA}][\Phi_A])$$

- Iterative Residual Kinetic Energy (IRKE) starts with small ASET and adds DOF one or more at a time based on RKE
- Error calculated at each step. Algorithm stopped when error reaches acceptable level

DMAP is ideal tool for implementing IRKE

- Need to deal with full size matrices
 - Possibly millions of DOF
 - Problem would not be feasible in Matlab
- Key to efficient implementation is to avoid solving $[K_{OO}]^{=-1}[K_{OA}]$ at each iteration
- Use 'U1' set to limit DOF to choose from
- Write error norm at each step to monitor progress
- Other algorithms implemented in DMAP
 - Effective Independence (EI)
 - Mass Weighted Effective Independence (MWEI)
 - Iterative Guyan Reduction (IGR)
- Part of a package of DMAP alters called TAMKIT

Outline

- What is DMAP?
- Use of DMAP to Select ASET DOF
- Use of DMAP in dynamic analysis
 - Modal transient analysis
 - Fluid mass loading
- Summary/Free stuff!

A DMAP Example

- Correct "Deficiencies" in Modal Transient Analysis
 - Start from a quasi-static initial condition
 - Include only flexible contribution to displacement outputs
 - Static and Dynamic Uncertainty Factors (SUF and DUF)
 - Conversion of structural to viscous damping

Initial Conditions

- Modal transient does not support initial conditions
 - Initial force treated as a step
 - IC Case Control allows some capability, but not practical
- Input force can be decomposed as follows:

 $[I]\{q(t)\} + [B]\{q(t)\} + [\Lambda]\{q(t)\} = [\Phi_A]^T ((\{f_A(t)\} - \{f_A(t_0)\}) + \{f_A(t_0)\})$

Quasi-static response defined as follows:

 $\{ \mathbf{q}_{RB} \} = [\Phi_A]_{RB}^T \{ f_A(t_0) \} \qquad \{ q_{RB} \} = \{ 0 \}$ $\{ \mathbf{q}_{EL} \} = \{ 0 \} \qquad \{ q_{EL} \} = [\Lambda_{EL}]^{-1} [\Phi_A]_{EL}^T \{ f_A(t_0) \}$

- Subtract initial forces from force time history and calculate response
- Add quasi-static response to initial forces back in

Remove Rigid Body Displacements

- Typically not interested in rigid body displacements
 - Rigid body displacements "swamp" flexible displacements
 - Only flexible displacements generate loads
 - Including rigid body displacements results in inaccurate loads
 - Can do this using PARAM,LFREQ, but that also gets rid of rigid body accelerations
- Solution is to simply set rigid body displacements to zero

 $\left\{q_{RB}(t)\right\} = \left\{0\right\}$

Apply SUF and DUF

- Uncertainty factors commonly used in coupled loads analysis
 - Occasionally desire different factors on quasi-static (SUF) vs. dynamic (DUF) parts of response
- Quasi-static response defined as follows:

$$\{ \mathbf{Q}_{RB}(t) \}_{QS} = [\Phi_A]_{RB}^T \{ f_A(t) \} \qquad \{ q_{RB}(t) \}_{QS} = \{ 0 \}$$

$$\left\{ \mathbf{\mathcal{G}}_{EL}(t) \right\}_{QS} = \left\{ 0 \right\} \quad \left\{ q_{EL}(t) \right\}_{QS} = \left[\Lambda_{EL} \right]^{-1} \left[\Phi_A \right]_{EL}^T \left\{ f_A(t) \right\}$$

· Dynamic response is total response minus quasi-static

$$\{\mathbf{a}(t)\}_{DYN} = \{\mathbf{a}(t)\} - \{\mathbf{a}(t)\}_{QS} \quad \{q(t)\}_{DYN} = \{q(t)\} - \{q(t)\}_{QS}$$

Total response recombined with factors

$$\{\boldsymbol{q}(t)\} = DUF\{\boldsymbol{q}(t)\}_{DYN} + SUF\{\boldsymbol{q}(t)\}_{QS}$$
$$\{\boldsymbol{q}(t)\} = DUF\{\boldsymbol{q}(t)\}_{DYN} + SUF\{\boldsymbol{q}(t)\}_{QS}$$

Equivalent Viscous Damping

- Structural (or material or hysteretic) damping is <u>only</u> defined in the frequency domain [K] = [K] + j([K4] + g[K])
- Nastran converts structural damping to equivalent viscous at two frequencies (W3 and W4)

$$[B] = \frac{g}{\omega 3} [K] + \frac{1}{\omega 4} [K4]$$

 In modal space we can match damping ratio at all modal resonances

$$[B_{HH}] = g [K_{HH}]^{\frac{1}{2}} + [K_{HH}]^{-\frac{1}{4}} [K4_{HH}] [K_{HH}]^{-\frac{1}{4}}$$

Implementation in DMAP

- Use Parameters to Control Solution
 - All parameters have defaults
 - User only needs alter and parameters

PARAM, NRIG, I	: Number of rigid body modes (default=6)
PARAM, AUTOIC, CHAR8	: 'YES' calculate initial conditions (default)
	'NO' standard Nastran processing
PARAM, EQVDMP, CHAR8	: 'YES' apply equivalent damping algorithm
	: 'NO' standard Nastran (default)
PARAM, RBDISP, CHAR8	: 'YES' include rigid body displacements
	'NO' no rigid body displacements (default)
PARAM, NORESV, CHAR8	: 'YES' remove residual vectors from dynamic response (default)
	'NO' do not remove residual vectors from dynamic response
PARAM, DUF, RS	: Dynamic Uncertainty Factor (default = 1.0)
PARAM, SUF, RS	: Static Uncertainty Factor (default = 1.0)

- Use string based alter commands
 - Minimize number of locations that are "altered"
 - Try to find "robust" locations for alters
 - Hasn't broken yet

Enhancements to MFLUID

- Fluid mass matrix based on elemental matrices

$$\left[M_{fluid}\right] = \left[GEG\right]\left[MLAM\right]\left[MCHI\right]^{-1}\left[GEG\right]^{T}$$

- Use non-sparse decomposition of [MCHI]
- Calculate fluid rigid body mass

$$\left[M_{fluid}\right]_{RB} = \left[\Phi_{RB}\right]^{T} \left[M_{fluid}\right] \Phi_{RB}$$

 When used with a "Q-set" replaces functionality of PARAM,VMOPT,2 in a competitive version of Nastran

Outline

- What is DMAP?
- Use of DMAP to Select ASET DOF
- Use of DMAP in dynamic analysis
 - Modal transient analysis
 - Fluid mass loading
- Summary/Free stuff!

Summary

- DMAP is a primary differentiator for Nastran vs. other FEM codes
- All NX Nastran (other than advanced nonlinear) is written in DMAP and can be modified using DMAP
- To write DMAP alters you need to understand Nastran data blocks and solution sequences
- Using DMAP is easy if it's written well
 - Use string based alters for robustness
 - Use parameters to control
 - Comment, comment, comment

Free Stuff (DMAP alters) on CD!

- modal_transient
 - Variety of updates to SOL112
- mfluid
 - Calculate fluid mass properties
- readcb
 - Read components in OUTPUT4 format
- unit_conversion
 - Convert units of components
- rcvrcb109
 - Recover component results from direct transient

