PLM World ‘06

Automated creation of KF rules~

Dipl.-Ing. Guido Klette
Prof.-Dr. Sandor Vajna
Chair of Information Technologies in Mechanical Engineering
Institute of Engineering Design
Otto-von-Guericke University
Magdeburg

GERMANY

research activities
iIntroduction
process

logging

action

rule creation
example
summary

Research activities

Product Modelling
Feature-based design, Parametrics

Knowledge Application Autogenetic
in Product Development Design Theory

Integrated
Product Development

Economical Benefits
of New Technologies

Process Models for
Product Development / Engineering

Introduction

the need

Classical approach in product development
Parametric CAD/CAM systems help to do

Transfer this to product data definitions
Create CAD data with:

minimize costs
less cost

less time
sufficient quality

minimize time

maximize quality

Introduction

Today'’s factors
" Parametric CAD/CAM systems for easy changes
Rule based design (design logic etc.)

KF applications to fulfill quite specific design tasks with high engineering design knowledge
effort

EDM/PDM systems to manage CAD/CAM data and other related documents

EDM/PDM systems to manage design work flows, product structures, users and rights, etc.
Interfaces to several CAD/CAM systems for data exchange

CAD data quality checker (VDA-Checker, Check-Mate, etc.)

Missing

" Identification of the needs designers have while designing without exhausting meetings,
surveys or long lasting implementation strategies in companies

CAD data quality checks to follow best practices in companies

Self extending CAD system rules to automate routine design tasks without
heavy application engineering effort

Design complexity logging algorithms for possible cost estimation while designing

Introduction

Characteristics of design

Designing seems to be chaotic and hard to forecast

It's hard to find patterns in the usage of CAD functions and
features

Examples of standard functions and features:

" Part new, part open, use of features, use of parameters, save
as..., add components, change/delete features

Timestamp order, can be changed
Feature Dependency Browsers
Use of EDM/PDM system information

Process of self based rule creation

Rule
Templates

work

E_ogging designers

Supply UG with
new classes

Definition of
Rules and Classes

Interpretatlon of
Logs
Actlon of
firing a rule

() Background process
@ \Visible to designer

Logging

Different ways of logging:

Event based logging

When designers use functions (Save, Check, after certain
tlme after certain amount of features built in, etc.)

KF-Log (scan parts for new geometry — ug_cycleobjectsby...())
KF-Application Log (write log-routines for your KF applications,
database entries)

Call specific KF design analysis functions (manually or
connected)

Continuous logging
All the time, when the designer uses the CAD system

Unigraphics Log-File (hard to interpret, ask GTAC?)
Write separate log file as it is needed

Question:
" When a user-process should fire a new rule?
" What will the new rule include?

" How to make sure, that no self-induced rules are
fired?

In terms of continous logging:

" Looking for patterns in the chaos to create a defined
rule

In terms of event based logging:

" New rules can be fired connected to specific events
or manually

Rule creation

Basic application for create new rules and
Classes

Event driven - when adding a new component or changing in design
takes place

This action together with some information the user has to provide
generate new .dfa files with a specific class that

A template .ixt file contains a standard .dfa class

With a KF algorithm the new class is build from the template and the
user entries

The class is instantly available to the system

-> The system extends itself

Example of a self extending KF application - ICE

é "\

el

Usage for first complexity estimations of
machined and assembled parts for possible

cost

" Start with an empty KF application (integrated complexity estimation —
ICE)

" Definition of types of machining (milling, welding etc.) is done, when
needed

Usage of a KF application to define the types of machining on
geometry with following information:

" Mask (which geometry should be selected, edge, face, body, ...)

" Analysis type (welding, cutting = length of edges, milling = area)

" Simplified costs per unit (welding, single side = 450€ / m)

Attributes of are written on geometry

Machining types are saved in .dfa file for further usage in ICE or other
applications

Examples

& Attach manufacturng attrbut. . * Here: Rotor of a generator
Manufackuring MainType il I.__[® Cutted

» welded

* milled rotary

» milled plane

Manufackuring SubTvpe il plane fine

Anwenden Abbrechen

» Within an assembly single
geometry (edges, faces, etc.)
IS selected

A

o
Es
o,
g
S
=
B
i |
re

winiuini -1 -fufu:
BE

« Manufacturing type is assigned

 Assigning one component, all
same components have the
same information (saves clicks)

CAtee00080088 2800080008480 |-

L
g

Examples

(o 5 . - - - —
% Attach manufacturng attrbut...

If manufacturing type not available,

new manufacturing definition

can be created

= —
v
Seleck Requirement | Leere Liste |v_] I
Input Requirement Name
Input Requirement Yalue O.oooao

This results in a new .dfa file
with a new class and new rules,
that are instantly available to the system == =

cccccc

ccccccccccccc

else 0;

Sa)

Examples

[y %

R v * |CE collects all available assigned
sertute fr information on the assembly
Sub MaruFackuring Tw;.-'pe wrnlald
mill roratary rough (7540 schritt
mill roratary fine o) e .
e (G619 « Sums up specific analysis results
mill plane rine

specifically to the manufacturing type

* Result shows a simple
Parts attached subMac . Processing .ﬁ.rea. man UfaCtUI’Ing COmpleXIty Of partS

'l,Schwelssbaugruppe'l,T Prafil.prt (9]
SchweissbaugruppelFlansch_innen.prt (2)
'|g'l,Su:hwmssbaugruppe'l,Hng 0z.prt (173
ngtSchweissbaugruppe\Elech_mitte, prt (33
il Schweisshaugruppe)Yersteifung_aussen.prt (8]
gtachweissbaugruppei\Ring. prt (1)
ngSchweissbaugruppelFlansch.prt (1)

" » Results can be reported
(standard KF)

e —_—_——
i

| Sum: 15080
2 _| [2]}|

Save Akkribuke ba File

« If design changes are made,
E] results vary and may show
oc | [amencen |[abrechen] Detter or worse solutions for
manufacturing

Summary

ICE can provide a simple way to estimate complexity of design
in terms of manufacturing (costs) while designing

ICE is self extending

Created rules are simple, but can be used further on from other
KF applications

Might be useful in local and central usage of KF-classes

To create more complex rules continuous logging should be
used

Hard to build applications, that extend themselves in an
intelligent way (might be an Al approach)

Next step would be a self-learning system
Further research necessary

Discussion welcome!

Thank you for your attention

Live demonsiration

If there are any questions, please ask!

Dipl.-Ing. Guido Klette

Information Technologies in Mechanical Engineering

Otto-von-Guericke University, Magdeburg

Universitaetsplatz 2

39106 Magdeburg, Germany

guido.klette@mb.uni-magdeburg.de Tel: ++49 391 67 18094

