
PLM World ‘06

Premium Partners:

Assembly Configurations in I-DEAS

Brian Slick
Ferno-Washington, Inc.
bslick@ferno.com -or- brianslick@mac.com
800-733-3766

mailto:bslick@ferno.com
mailto:brianslick@mac.com

Brian Slick – I-DEAS History

· Co-op with SDRC, Fall 1996 (MS3)
· I-DEAS Instructor, June 1998 – October 2001

· Design-related topics: Part Design, Assembly, 2D/3D
Drafting, Best Practices, Surfacing, Harness, and C3P
equivalents

· Contract Drafter Sr. Project Engineer – Ferno
· Created hundreds of parts, assemblies, drawings
· “Assembly Manager” for several large (700+ instance) assemblies
· User training and support
· CAD evaluation and testing

· Winner of 2004 and 2005 PLM World “Top Gun”
Contests

Ferno-Washington, Inc.

· Privately held, global company
· Multiple product lines in Emergency,

Mortuary, Therapy, and Veterinary markets.

Overview

· Basics
· Switching Behavior
· Subassemblies
· Unuse
· Error Messages

Basics

Configurations in I-DEAS allow a single assembly to exist with
multiple positional and display scenarios. There are a variety of
reasons to use configurations, but fundamentally they provide:

1. Different positions
· Also dimensional values

2. Different displayed information
· Hide/Show, and Suppress/Unsuppress

Basics – Manage Configurations

Use a different config

Make a new config
Copy config

Rename Config

Basics – Creating Configurations

…while Copy will duplicate the currently
selected configuration.

New and Copy are very similar. New will
duplicate the currently active configuration…

Basics – Positions

Each instance can be in a unique position and orientation in each configuration

This example does not have any
constraints. The part instances can be
moved, rotated, aligned, or dragged as
the user desires.

Basics – Dimensional Values

Each dimension can have a unique value in each configuration

Basics – Hide/Show

Each instance can be hidden or shown in each configuration

Hide is a display function only. It has no other affect on dimensions,
constraints or mass properties

Basics – Suppress/Unsuppress

Each instance can be suppressed or unsuppressed in each configuration

Suppress does have display purposes, but suppressed items do not
participate in the constraint network, or contribute to mass properties

Basics – Constraint Behavior

A constraint is either active or disabled across all configurations. It is not possible
for it to be active in some and disabled in others. The exception to this is when an
instance the constraint is tied to is suppressed – thus leaving nothing to act upon -
the constraint is disabled by I-DEAS in that config, but may be active in others.

Active

All Configs

Disabled

All Configs

Suppressed Instance

Case-By-Case

Basics – Ignore Constraints

The Ignore Constraints toggle does exactly what the name says: does not solve or otherwise
enforce any constraints in the configuration. This allows instances to be in positions that their
constraints wouldn’t otherwise allow, for example exploded for a drawing. Note color differences
for the constraints and dimensions.

Basics – Design Configurations

The Design Configuration toggle allows additional design
intent to be applied to individual configurations. Toggled on,
the configuration is marked as “important.”

From a user perspective, this allows anyone who uses this
assembly to know which configurations are “good,” and which
ones may not be. An example would be any configurations
that are directly used to define a print

Any number of Design Configs can be tagged, but the software
will offer a harmless warning if the number goes over a default
of 2. (Default can be changed)

From the software’s perspective, a design configuration has a number of
characteristics:

1. If changes have been made to the assembly, ALL Design Configs must be
activated (Used) and thus updated before a library Check-In will be allowed

2. When this assembly is instanced into another assembly, the first Design
Config listed will be the one that is initially used

3. If a Design Config contains subassemblies, those assemblies must also be
using Design Configs or library Check-In will not be allowed

Behavior – Switching Configs + New Instances

If items are added to an assembly, I-DEAS makes some assumptions regarding what should
happen to those items when switching to a different configuration. Example:

Step 1: Begin with a simple
assembly

Step 2: Duplicate the config,
activate it, then go back to
the first one

Behavior – Switching Configs + New Instances

Step 3: Add another instance

Step 4: Switch to the other
config, and note the List
Window

This basically says that because I-DEAS has no
information about the new instance in the other config,
the instance will be in the same spot it was in the first
config.

Behavior – Switching Configs + New Constraints

Step 5: Switch back to the first
config and add a constraint

Step 6: Switch to the second
config

With automatic update turned on, the new instance will
slide to its former position. The constraint will be kicked
out of date, and the automatic update will then enforce
the constraint, pulling the instance back into place

NOTE: I-DEAS remembers the position of
the 2nd instance first and foremost.

Subassembly Configurations - 1

An assembly’s configurations are still available when that assembly is placed into another
assembly.

Finger Assy

Hand Assy

Subassembly Configurations - 2

A parent assembly can use configurations to control dimensional values just like any assembly
can, even those that control the orientation and position of subassemblies.

Hand Assy

Subassembly Configurations - 3

A parent assembly can also control which configurations the subassemblies will use.

…or control dimensions and configurations

Subassembly Configurations - 4

Available configurations are displayed based on which assembly is selected.

Subassembly Configurations - 5

A parent assembly can have multiple configs that use different subassembly configs.

Subassembly Configurations - 6

Subassembly configurations can be created while the parent assembly is on the screen

- if library permissions permit

Subassembly Configurations - 7

Subassembly configurations can be modified while the parent assembly is on the screen

- if library permissions permit

Subassemblies & Design Configurations – 1

If a parent assembly configuration is tagged as a Design Configuration, then all
subassemblies must also be using Design Configurations, or the parent cannot be
checked into a library.

Not using a
Design Config

Good:

Bad:

Subassembly Configs & Library Permissions

Switching between subassembly configurations does not change the
subassembly. The data is already there, the user is simply looking at a
different subset of that data. Therefore, a parent assembly can toggle
between a subassembly’s configurations regardless of Library Status (Rfl,
CK, or Co) of the subassembly. Switching subassembly configurations is a
change to the parent assembly.

When subassembly configurations are used, the subassembly data is
accessed directly. The parent assembly really doesn’t know anything about
the subassembly, other than the fact that it is present in the assembly, and
which configuration is being used. Any changes that are made to the
subassembly while in context of the parent – modifying dimension values,
adding or removing constraints, etc. – are made directly to the subassembly,
even though it is not currently on screen. Therefore, proper Library Status
(CK or Co) for the subassembly will be required in order to make the change.

Subassemblies & Ignore Constraints

Toggling on Ignore Constraints in a parent assembly configuration affects only those
constraints controlled by the parent assembly. It does not affect subassembly
constraints.

Note the color differences of the constraints. Those owned by the parent are disabled.
Those owned by the subassemblies are still active. Pulling the subassemblies apart
will simply cause the pieces to snap back into place after an Update.

Parent Lock disabled

Sub Lock active
(within sub)

Unuse - 1

In order to understand what it means to Unuse a subassembly, it is useful to review
how assemblies in I-DEAS work.

When adding components to an assembly – parts or other assemblies – the real item
itself is NOT used. I-DEAS creates what is called an Instance. An instance basically
points to the real item. An instance is a single item, regardless of what it is pointing at.
A single part instance points at one part; a single assembly instance points at one
assembly. Even if the assembly being pointed to contains hundreds of other
instances, the current parent assembly sees only a single entity: an assembly
instance.

Use (selected config)

Unuse (selected subassy)

Unuse All (subassy’s owned
by selected subassy)

Unuse - 2

Unusing a subassembly has a very specific meaning: pretend the subassembly isn’t
there, and act as if the components of that subassembly were placed into the parent
assembly directly. As far the instances and constraints are concerned, Unusing is
roughly equivalent to using Change Parent to move the instances higher in the
hierarchy. The parent assembly now owns, and is thus able to modify, any dimension
values independent of the subassembly. Any newly created constraints and
dimensions will be owned by the parent, and therefore never seen by the sub.

Config is used

Config is not used, controlled by parent

Unuse - 3

Unusing a subassembly can be handy or even necessary if the subassembly does
not contain a configuration with the desired position and/or dimensional value.

Subs are Rfl, and configs are used.
Dims cannot be modified.

Sub config is unused, parent is now
able to modify dimension value. Sub
is not aware of the change

Unuse

Keep in mind that the subassembly knows nothing about the change (it is still Rfl, and
therefore not modifiable). If the change is that important, it really should be applied to
the sub directly. This sample scenario is “emergency only,” not a “first response.”

Unuse - 4

If motion is desired, there may be no choice other than to unuse a subassembly.
Consider a simple piston assembly:

Connecting rod needs to be free to pivot relative to the
head.

Unuse - 5

With duplicate instances, only one piston position is
possible if both are using the same configuration, or at
most two positions if they use different configurations.

Unuse - 6

The first piston constrained will force the crankshaft to
adjust to honor the constraint, if it is otherwise free to do
so.

However, the second piston cannot be constrained:

It is not physically possible for both pistons to be using a single configuration, and
exist with two different positions. Also, the crankshaft is not able to rotate. The first
piston is forcing it to stay at that particular angle.

Unuse - 7

By unusing both subassemblies, I-DEAS no longer treats
each piston as a single entity. Instead of solving for 2
pistons, it now solves for 4 items: 2 heads and 2 rods.

If the piston subassembly was constrained in such a way that motion was not possible
(rod parallel to center of head, for example), then unusing configurations will not
“solve” the “problem” of being unable to constrain both pistons to the crankshaft. If
motion will be necessary at a higher assembly level, then the motion has to be
possible at the lower level as well. Basically, the sub cannot be fully constrained.

Subassemblies & Design Configurations – 2

As previously stated, if a parent assembly configuration is tagged as a Design Configuration,
then all subassemblies must also be using Design Configurations, or the parent cannot be
checked into a library. However, if a subassembly has been unused, then check-in can proceed.

Unused

Good:

Acceptable:

Check-In Errors – 1

Sometimes I-DEAS warning messages are handy and informative. The warning
explains the problem, the list window provides useful information, and it should be
pretty clear what needs to happen to fix the problem

In the event it isn’t clear… in this case, the parent assembly is tagged as a Design Configuration, but
one of the subassemblies is not. That sub must either also be tagged, or must be unused.

Check-In Errors – 2

Sometimes I-DEAS warning messages are less than informative. The warning
explains the problem, sort of, but may not provide enough information to indicate a
possible solution. Worse, the List Window may not have any additional information.

Worse, the message in question makes a questionable recommendation.

In this case, a change of some kind was made that affected a configuration that was tagged as a Design
Configuration. However, that configuration was not activated or updated before attempting check in.
Unfortunately, I-DEAS does not provide many hints regarding which configuration needs to be updated,
and there could be more than one. In the event of such a change, all Design Configurations must be
activated (Used) and updated prior to check in.

Check-In Errors – Workaround

The previous error message referred to an option called “Update assembly for library
check in.” This is found under Update Options.

With this option turned on, I-DEAS will automatically – behind the scenes – update all configurations when
Update is hit. This will naturally take longer than a regular update, but can be significantly faster than
individually activating each configuration. Plus, the check in should succeed afterwards. For those reasons, it
tends to be popular.

BE WARNED, however, that turning this toggle on essentially defeats the primary reason for having Design
Configurations in the first place. By requiring that a Design Configuration be activated before check in, the
assumption is that at least some form of visual inspection of the configuration will happen, since it is right there
on the screen. The user can verify that the impact of any changes was handled correctly. However, since this
option does the update behind the scenes, the Design Configurations are never visually verified. The check in
proceeds as if nothing is wrong, and the user is none the wiser if there are indeed problems. What’s worse,
any downstream users will assume that the configuration is correct, since it is tagged as a Design
Configuration, and will make design assumptions on incorrect data. Design Configurations were specifically
created to avoid precisely this scenario, so use this toggle sparingly and cautiously.

The End

Questions? Comments?

Brian Slick
bslick@ferno.com

	Assembly Configurations in I-DEAS
	Brian Slick – I-DEAS History
	Ferno-Washington, Inc.
	Overview
	Basics
	Basics – Manage Configurations
	Basics – Creating Configurations
	Basics – Positions
	Basics – Dimensional Values
	Basics – Hide/Show
	Basics – Suppress/Unsuppress
	Basics – Constraint Behavior
	Basics – Ignore Constraints
	Basics – Design Configurations
	Behavior – Switching Configs + New Instances
	Behavior – Switching Configs + New Instances
	Behavior – Switching Configs + New Constraints
	Subassembly Configurations - 1
	Subassembly Configurations - 2
	Subassembly Configurations - 3
	Subassembly Configurations - 4
	Subassembly Configurations - 5
	Subassembly Configurations - 6
	Subassembly Configurations - 7
	Subassemblies & Design Configurations – 1
	Subassembly Configs & Library Permissions
	Subassemblies & Ignore Constraints
	Unuse - 1
	Unuse - 2
	Unuse - 3
	Unuse - 4
	Unuse - 5
	Unuse - 6
	Unuse - 7
	Subassemblies & Design Configurations – 2
	Check-In Errors – 1
	Check-In Errors – 2
	Check-In Errors – Workaround
	The End

