
1

Advanced Post Builder
Techniques

My Contact Info

Ken Akerboom
Moog, Inc
East Aurora, NY
kakerboom@moog.com

Specialty Engineered Automation
akerboom@sea4ug.com

Who is Moog?

We don’t make musical instruments or auto parts…

4

Topics

“source”ing in tcl files

Replacing/modifying Post Builder “proc”s with your
own

Using a UGPost post to create “shop docs” without
using Shop Docs

The good, the bad, the ugly, and the %#&^!!$*&^!

NOTE: to simplify the display, most tcl code in this
presentation does not have required “global” variable
definition, nor does it have required (or at least
highly recommended) error checking…

What is “source”ing?

You can use the tcl “source” command to include data
and/or procs from another tcl file into the current file:
source "${cam_post_dir}Moog_common/moog_common.tcl

One way to think of “source” is:
When the tcl interpreter encounters a “source”
command, it copies the text from the “sourced” file and
pastes it into the current file in place of the “source”
command.

Note you can’t include stuff selectively

You get all of the file.

In a PB post, you don’t edit the Post Builder created tcl
file, instead…

Sourcing in a “User” tcl file

By default, this MUST be in the same folder as the
post…

What to put into the “user” tcl file?

Extra variable definitions: mom_sys_coolant_code(THRU-LP)

Event handlers for UDEs

Replace or modify procs created by Post Builder

Complex code from custom commands (PB_CMD_*)

Code used in multiple custom commands

Linked posts can share the same “user” tcl file to
share common code between the posts

You can also source in common code shared
between multiple post processors

“source” in the *_User.tcl file

Examples from Moog:

Procs common to all posts:
source “${cam_post_dir}Moog_common/moog_common.tcl”

Procs common to a machine type:
source “${cam_post_dir}Moog_common/okuma_common.tcl”

Procs common to a department:
source “${cam_post_dir}Moog_common/okuma_sbc_common.tcl”

Procs related to a specific post feature
source “${cam_post_dir}Moog_common/thread_mill_macro_okuma.tcl”

“source” in the Post Builder’s *.tcl file

In the .tcl file created by Post Builder, it sources in 2
files:

Near the beginning, it sources in ugpost_base.tcl:
source ${cam_post_dir}ugpost_base.tcl

Near the end, IF IT EXISTS, it source’s in the “user”
tcl file:

set user_tcl_file ${cam_post_dir}nyug_user.tcl
if { [file exists $user_tcl_file] } {

source $user_tcl_file
}

Who Wins?

If a variable or proc is defined multiple times, which
definition is used?

In tcl, the LAST* definition will be used, if you read
through the tcl file(s) from start to end, “source”ing in
other files at the location of the “source”.

* Note that some procs are defined by the post running a
PB_CMD_* that actually defines the proc, so the proc
does not get defined as the tcl interpreter is reading the
tcl file (search for “uplevel” in the PB .tcl file).
Rather it is defined AFTER all the tcl files are read and
the post is actually run. E.g.:
MOM_rotate{} is not defined until PB_CMD_kin_init_rotary{}
is run.

Who Wins (cont.)?

post.tcl
proc A {} {}

proc B {} {}

proc C {} {}

proc D {} {}

source p_user.tcl

post_user.tcl
source com.tcl

proc A {} {}

proc D {} {}

proc E {} {}

proc G {} {}

com.tcl
proc A {} {}

proc C {} {}

proc E {} {}

proc F {} {}

“proc”s in RED (LAST one found)
will be used

proc A {} {}

proc B {} {}

proc C {} {}

proc D {} {}

proc A {} {}

proc C {} {}

proc E {} {}

proc F {} {}

proc A {} {}

proc D {} {}

proc E {} {}

proc G {} {}

Is the same as:This:

=

Where to source in other files

My preference is to source other files in at the
BEGINNING of the *_user.tcl file

As the *_user.tcl file is sourced at the end of the Post
Builder .tcl file, this means…

Anything YOU write will over-ride the UGS post-builder
created code

If they have a bug, or don’t do what you want, you don’t
have to edit the post’s tcl file every time you save it.

By “source”ing your other (shared) files at the beginning
of the *_user.tcl

If a post need to over-ride one or two procs in the common
(sourced-in) tcl files, you can add that code AFTER they
are sourced in, but still use the rest of the common code.

Replacing PB’s procs – “normal” procs

If you want to completely replace a PB generated
proc…

If the proc is “normally” defined…

Just put a “proc MOM_linear_move {} {…}” in your
user .tcl file

The PB proc is created by another PB proc

There are a couple ways, but you have to write your
own PB_CMD_* to run AFTER the PB internal proc.
You can either:

Use “uplevel” like PB does (emulate how PB defines the
proc)

Use the tcl “rename” command (twice)

Create your proc with a slightly different name in the
*_user.tcl file (e.g. “proc Moog_mom_rotate”)

In the PB_CMD_Moog_*

“rename” the UGS procedure:
rename MOM_rotate UGS_MOM_rotate

And “rename” yours to the desired name:
rename Moog_mom_rotate MOM_rotate

If you want to alter the PB proc’s behavior

E.g. for MOM_text, you want to force everything to
UPPERCASE

In the *_user.tcl file:
make sure we haven’t already renamed it
if {![string length [info procs UGS_MOM_text]]} {

rename MOM_text UGS_MOM_text
}

Now define our own proc, call the PB one at the end:
proc MOM_text {} {

#… Do uppercase here …

Now call the UGS proc
UGS_MOM_text

}

Documentation without Shop Docs

While you can use the Siemens “Shop Docs” module to create
your shop floor documentation…

It’s a different architecture and syntax to learn from Post
Builder

If you’re not careful, it includes ops/tools/etc. that aren’t
output in the posted code

It’s run as a separate action in NX, so it’s easy for users to
forget to re-run after changing a program

While it can create graphical images, they are of dubious
value in many parts (only one layout/orientation/zoom/etc.)

If you need different variations for different machines (e.g.
mill vs. lathe) you may need different Shop Docs.

Using UGPost to create your shop
floor documentation

My personal preference is to create the
documentation files as a part of the posting process.

Always captures ONLY what is in the posted code

Always consistent with the posted code

Graphics can be created using an API extension to
Ugpost

The way I wrote my code, the same shop docs code is
shared by ALL my posts

The output changes based on the information saved,
which can be tailored by what is saved while posting.

You can use this method to add tool lists, etc. to the
beginning of the posted code, as well as outputting
separate files.

UGPost docs – general architecture

What I do is:

Store all the information, as I encounter it, in tcl lists and arrays:

Operation info in “start of path” event

Tool info in “Tool change” and “first move” events

I use part, operation, and tool attributes to store “other” info
(descriptions, fixtures, etc.) in the part so the post can access it.

Save Cutter Dia. Comp. registers used in “cutcom on” event

Array indexes: Use strings that NX forces to be unique:

Operation names

Tool Names

Index variables you create yourself

Once the post is done, in the “end of program” event, I run a proc that
actually creates the documentation file.

Architecture (cont)

Again, all the actual tcl code to save/output the docs is in
a single “source”d in tcl file.

I also have a set of custom commands that I “Import”,
then add to the appropriate events:

Typical custom command looks like:
#
Saves tool info
Place in "Initial Move" and "First Move“
#

Moog_SD_Save_Tool_Info

Adding docs output to a post takes me 5 minutes

EXAMPLE: Saving tool data

proc PLM_SD_Save_Tool_Info {} {;# globals omitted for brevity

if {![hiset mom_tool_name]} { return }

set plm_sd_tool_no($mom_tool_name) $mom_tool_number

if {[hiset mom_tool_adjust_register]} {

this stores ONE value - You will probably want to store

all values, then sort/uniqeify in output routine

set plm_sd_tl_adj($mom_tool_name) "$mom_tool_adjust_register"

}

if {[hiset mom_tool_catalog_number]} {

set plm_sd_tl_catno($mom_tool_name) "$mom_tool_catalog_number"

}

if {[hiset mom_attr_TOOL_DESCR]} {

set plm_sd_tool_descr($mom_tool_name) "$mom_attr_TOOL_DESCR"

unset mom_attr_TOOL_DESCR ;# # clear this variable here

}

}

Warning about tool info

UG post does NOT clear tool info between operations.

So if the first tool defines a catalog number, and the second does not,
mom_tool_catalog_number will still exist when you save tool info for the
second tool

I wrote a proc (put in “end of path”) to clear MOST tool info (some you do
want to keep) [note “global” lines omitted for brevity]:
if {![hiset mom_next_oper_has_tool_change]} { return }

if {$mom_next_oper_has_tool_change != "YES"} { return }

set global_vars [lsort [info globals "mom_tool*"]]

foreach global_var $global_vars {

there are a few variables we DO NOT want to clear...

if {![string compare $global_var "mom_tool_use"]} { continue }

if {![string compare $global_var "mom_tool_count"]} { continue }

upvar #0 $global_var global_val

unset global_val

}

catch { unset mom_tracking_point_name }

catch { unset mom_tracking_point_type }

EXAMPLE: Adding a tool list to the
beginning of an NC file

Use Ugpost to write a “flag line” where you want the
tool list at the beginning of the file

Make it some unique text like
“TOOL_LIST_GOES_HERE”

Like “UGPost Docs”, save the tool information (in
arrays based on the tool name) when you encounter
it (e.g. in tool change events)

In the “End of program” event have a proc do the
following (next slide)

Adding a tool list to a posted file (cont.)

Close the current output file using MOM_close_output_file

Rename the output file to a temp name
This and the rest of the steps use “normal” tcl commands

Open the “temp” file, and also open a new file using the
desired output filename

Read through the temp file, line by line
If not the “flag” line, just write the line to the output file

If it IS the “flag” line, write the tool list instead

Close both files

Delete the temp file

EXAMPLE: End of file code

proc NYUG_Insert_Tool_List {} {;# globals omitted for brevity

if {![array size plm_sd_tool_no]} { return}

extract tool numbers once

foreach i [array names plm_sd_tool_no] { lappend ToolNos $plm_sd_tool_no($i) }

set ToolNosSorted [lsort -integer $ToolNos]

set last_tool ""

set tool_count [llength $ToolNosSorted]

MOM_close_output_file $mom_output_file_full_name ; # Close output file

rename current output file, so file with tool list is the desired name.

file rename -force $mom_output_file_full_name ${mom_output_file_full_name}_old

open both files

set OLD_File [open ${mom_output_file_full_name}_old r]

set NEW_File [open $mom_output_file_full_name w]

…cont…

EXAMPLE: End of file code (cont.)

read thru old file

while {[gets $OLD_File line] >= 0} {

if line is flag where to put tool list

if {$line == "PUT_TOOL_LIST_HERE"}

output tool list in new file

for {set i 0} {$i < $tool_count} {incr i} {

if {$last_tool == [lindex $ToolNosSorted $i]} { continue }

set last_tool [lindex $ToolNosSorted $i]

find tool name(s) for that index

foreach tname [array names plm_sd_tool_no] {

if {$plm_sd_tool_no($tname) == $last_tool} { break }

}

actual line of data

puts $NEW_File "[format "%3d" $last_tool] $ tname …“

}

} else { ;# otherwise, just copy the line

puts $NEW_File $line

}…cont…

Finishing…

} ;# end of “while” loop

close $OLD_File

close $NEW_File

file delete -force ${mom_output_file_full_name}_old

}

Output to a separate file

Similar to what I just showed you, but

You don’t need to play with the posted code file

Just open the desired output file, write to it, and close it

The good

By using “source” and the *_user.tcl file, you can
easily extend the powers of PB and share code
between posts

If you don’t like how a PB “proc” works, you can
change it (e.g. 5 axis mill rotary axis clamping
around JUST the line with the rotary axis move, not
the entire rapid event).

This is some very powerful stuff

The bad

PB takes longer and loooonger and looooooonger to
save every time you save

If you do most of your coding in a sourced tcl file, you
eliminate a lot of saves in PB (and text editors save
FAST)

Don’t play with PB created procs unless you
REALLY know what you are doing

I’ve “shot myself in the foot” many times, but that’s hw
you learn

You have to be careful when altering procs shared
between posts – you may fix one post but break
another.

The ugly

I’m getting tired of not having mom variables for
parameters I need in my posts…

Or having to use undocumented ones…

Or having variables that USED to work get
completely hosed (lathe tracking points in NX4…)

The %#&^!!$*&^!

I _used_ to recommend writing all sorts of TK dialogs to prompt
users for stuff.

Unfortunately, if you have a multi-processor system (I know 64 bit
multi-core CPU Windows machines have this problem, both
WinXP32 and WinXP64)…

The version of tcl Siemens uses (v8.1) is so old that it has a bug
that will randomly lock your NX session (I.e. you have to use task
manager to kill it). I haven’t found a reliable workaround.

I tried using MOM_run_user_function and an API program instead
of using TK dialogs, but this also locked NX up (although in a
different way)

If you use an API program to deal with the dialogs, then have it post
the file, its **should** work. (but now you need toolbars or Menuscript
or … to run the API program)

A plea (or 2 or 3) to Siemens:

PLEASE get your MOM tcl extensions up to a
current version of tcl…

When you re-base MOM on a newer version of tcl….

PLEASE include TK (or other GUI toolkit of your
choice) so we don’t have to jump through hoops
adding dialogs to our posts…

PLEASE convert XZC mill posts to use the regular
kinematics module so “head” objects and … will
work correctly.

33

Hope this was interesting…
Any questions?

